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Why does it matter?

In some (many?) industrial and business decisions, statistical
inferences play a crucial roles. For instance,

I quantification of a bank operational risk (Danesi et al., 2016)
determines the bank’s capital risk, i.e. the amount of money
to be promptly available in order to deal with possible future
losses. Inaccurate estimation of the capital risk leads to higher
economic costs.

I household appliances in the EU market must conform with
certain ECO design requirements, such as electricity (A+++,
A++, etc.), water consumption, etc.. UE manufacturers must
estimate and declare performance measures of their
appliances... again, inaccurate estimation lead to higher
economic costs.

I of course the list is much larger, e.g. think about medical
instruments, diagnostic markers, etc.

2/ 42



Is Bayes accuracte?

Given our model Pθ (sufficiently regular), the data y, the likelihood
function L(θ; y) and a prior p(θ), the posterior distribution is

p(θ|y) ∝ L(θ; y)p(θ).

Typically, a point estimate of θ is required and we could use the
maximum a posteriori (MAP)

θ̃ = arg max
θ
p(θ|y).

Question

How “accurate” is θ̃ ?
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Rules of the game

Classical full parametric inference problem in which, θ0 is the true
but unknown parameter value, Pθ0 is the true model and θ̃ is our
Bayes guess for θ0.

We deal only with regular models Pθ, i.e. models for which the
Fisher information I(θ) = Eθ

[
(d logL(θ; y)/dθ)2

]
exists.

The bias b(θ0) = Eθ0(θ̃)− θ0 is one popular way of measuring the
accuracy of an estimator; Eθ(·) is the expectation with respect to
model Pθ0 .

Ideally we’d like zero bias, i.e. maximum accuracy, but in practice
that’s seldomly possible.
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The typical behaviour of bias

If p(θ) ∝ 1, then θ̃ is the maximum likelihood estimator (MLE). In
this case, in independent samples of size n, we know that, typically

Eθ0(θ̃) = θ0 + b1(θ
0)n−1 + b2(θ

0)n−2 + · · · , (1)

bk(θ
0)’s , k = 1, 2, . . . , are higher-order bias terms that do not

depend on n.

If we have a guess for b1(θ
0) our estimator θ̃ would be

second-order unbiased. There are some non-Bayesian ways for
getting rid of b1(θ

0), when θ̃ is the MLE (more on this latter).

Therefore, if the prior is flat, the MAP is as accurate as the MLE,
i.e. is first-order unbiased.

What about the bias of θ̃ in typical Bayesian analyses?
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Is typical Bayes accurate?

In practice, the prior p(θ) ∝ 1 is seldomly used on the whole
parameter vector; perhaps much typical choices are:

I subjective or proper priors

I default and often improper priors such as the
Jeffreys’(Jeffreys, 1946), the reference (Bernardo, 1976),
matching (Datta & Mukerjee, 2004) priors

I or the more recent Penalised Complexity (Simpson et al.,
2017)

In some specific models, some of these priors could lead to
accurate estimators, i.e. second-order unbiased (more on this
latter) but none of them can guarantee this accuracy in general.

Roughly speaking, if the prior is not too data-dominated, the bias
of θ̃ will behave, at best, as in (??).
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Even a small bias could be practically relevant

Typical Bayes does not guarantee – in full generality and even in the
reasonable class of regular models – higher-accuracy in estimation.

You might think
that

“the bias is an O(n−1) term, so for large amounts of data it won’t be
a practical problem”.

TRUE. But, there are at least two reasons as to why even the first-order
term b1(θ) could be relevant in practice:

• large samples could be economically impossible since measurement
can be extremely costly, e.g. 3000$ per observation in the case of
testing a washing machine for ECO design requirements

• even a tiny bias can have a large practical impact, especially when
estimating tails of a distribution such as in operational risk.
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Desiderata for accurate Bayes estimation

We desire therefore a prior that matches the true parameter value
closer than the typical ones, and, possibly, free of
hyper-parameters...just like the Jeffreys’ or the reference.

We saw that such a “matching” is not always guaranteed by the
aforementioned priors, including p(θ) ∝ 1.

Note: there is nothing wrong with those priors, they just don’t fit
our purpose of getting accurate estimates.

Obviously, with this desired prior, we want to get the whole
posterior distribution, and not just θ̃.

How to build such a desired prior ?
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Bias reduction in a nutshell

Fortunately, there is an extensive frequentist literature devoted to
the bias-reduction problem in which one tries to remove, i.e.
estimate, the term b1(θ)/n.

Two approaches for doing this:

corrective: compute the MLE first, and correct afterwards (analytically,
bootstrap, Jackknife, etc.);

preventive: penalised MLE, i.e. maximise something like L(θ)p(θ), for a
suitable p(θ).
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Preventive bias-reduction

The “preventive” approach was first proposed by Firth (1993),
whereas the “corrective” one is much older.

In a nutshell: Firth showed that, solving a suitably modified score
equation – in place of the classical score equation – delivers more
accurate estimates, in the sense that the b1(θ) term of these
newly-defined estimates turns out to be zero.

In order to be more detailed, we need further notation...
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Notation and Firth (1993)’s rationale

Following McCullagh (1987), let θ = (θ1, . . . , θd) and set

• `(θ) = log{L(θ; y)} the likelihood function;

• `r(θ) = ∂`(θ)/∂θr the rth component of the score function;

• `rs(θ) = ∂2`(θ)/(∂θr∂θs);

• I(θ) the Fisher information, with (r, s)-cell is
kr,s = n−1Eθ[`r(θ)`s(θ)], k

r,s is the (r, s)-cell of its inverse,
kr,s,t = n−1Eθ[`r(θ)`s(θ)`t(θ)],
kr,st = n−1Eθ[`r(θ)`st(θ)], be joint null cumulants.

Firth (1993) suggests to solve the modified score function

˜̀
r(θ) = `r(θ)︸ ︷︷ ︸

score

+ ar(θ)︸ ︷︷ ︸
modification factor

, r = 1, . . . , d , (2)

where ar(θ) is a suitable Op(1) term, for n→∞.
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Firth (1993) meets Jeffreys’ prior ?!

For general models (using summation convention)

ar = ku,v(kr,u,v + kr,uv)/2 .

If θ̃∗, is the solution of (??), then Firth (1993) showed that the
b1(θ) term of θ̃∗ vanishes, i.e. Eθ0(θ̃∗) = θ0 +O(n−2).

Interestingly enough, if the model belongs to the canonical
exponential family, i.e. if the model can be written in the form

exp

[
d∑
i=1

θisi(y)− κ(θ)

]
h(y) , y ∈ Rd

then
ar = (1/2)∂[log |I(θ)|]/∂θr .

That is, θ̃∗ is the MAP under the Jeffreys prior!
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Towards priors with higher accuracy

Firth(1993)’s results suggest that ar (r ≤ d), could be a suitable
candidate as a default prior for the accurate estimation of θ, since:

• it is built from the model at hand;

• it delivers second-order unbiased estimates;

• it is free of tuning or scaling parameters, just like the Jeffreys;

From a Bayesian perspective, ar is a kind of matching ”prior”, that
tries to acheive Bayes-frequentist synthesis in terms of the true
parameter value θ0, when the estimator is the MAP.

Although the MAP is not the only Bayes estimator for θ0, with
respect to others, it is fast to compute.
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The Bias-Reduction prior

Thus, ar is the ingredient we are looking for in order to build our
prior. We call this the Bias-Reduction prior or BR-prior, and we
define it implicitly as

pmBR(θ) = {θ : ∂ log pmBR(θ)/∂θr = ar(θ) , r = 1, . . . , d }. (3)

Note that, for canonical exponential models, the BR-prior is
explicit,

pmBR(θ) = det(I(θ))1/2 ,

but for general models is available only in the form of (??).
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Dealing with the implicity

Use of πmBR(θ) in general models, leads to an “implicit” posterior,
that is, a posterior for which derivatives of the log-density are
available but not the log-density itself.

Unfortunately, this is a kind of “intractability” which cannot be
dealt with by classical methods such as MCMC, importance
sampling or Laplace approximation.

Approximate Bayesian Computation (ABC) isn’t of use either ...
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Dealing with the implicity (cont’ed)

For approximating such implicit posteriors, we explore two
methods:

(a) a global approximation method based on the quadratic
Rao-score function

(b) a local approximation of the log-posterior ratio for MCMC
algorithms.
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Classical Metropolis-Hastings

To introduce methods (a) and (b), first, let’s recall the usual
Metropolis-Hastings acceptance probability of a candidate value
θ(t+1), drawn from q(·|θ(t)) given the chain at state θ(t):

min

{
1,
q(θ(t)|θ(t+1))

q(θ(t+1)|θ(t))
p(θ(t+1)|y)

p(θ(t)|y)

}
.

The acceptance probability depends, among other things, on the
posterior ratio:

p(θ(t+1)|y)

p(θ(t)|y)
= exp

[
˜̀(θ(t+1))− ˜̀(θ(t))

]
,

where ˜̀(θ) = `(θ) + log p(θ).
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Method (a): global approximation via the Rao-score

• Given θ̃ the MAP of θ, i.e. the solution of the equation
˜̀
θ(θ) = ∂ ˜̀(θ)/∂θ = 0, then

exp
[
˜̀(θ(t+1))− ˜̀(θ(t))

]
= exp

[
w̃(θ(t))/2− w̃(θ(t+1))/2

]
,

where w̃(θ) = 2(˜̀(θ̃)− ˜̀(θ)), is the penalised log-likelihood
ratio statistic.

• For a fixed θ, assuming the prior is O(1) and for large n

w̃(θ) ∼̇ s̃(θ) = n−1 ˜̀
θ(θ)

T I(θ)−1 ˜̀
θ(θ) .

• Thus, for each θ(t), we can approximate w̃(θ(t)) by s̃(θ(t)).
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Method (b): local approximation (Taylor expansion)

• Consider a Taylor approximation of ˜̀(θ(t)) and ˜̀(θ(t+1))
(assuming d = 1 for notational convenience)

˜̀(θ(t)) ≈ ˜̀(θ̄) + (θ(t) − θ̄)˜̀
θ(θ̄) + (θ(t) − θ̄)2 ˜̀

θθ(θ̄)/2!,

˜̀(θ(t+1)) ≈ ˜̀(θ̄) + (θ(t+1) − θ̄)˜̀
θ(θ̄) + (θ(t+1) − θ̄)2 ˜̀

θθ(θ̄)/2! .

• Then replacing these approximations in the log-posterior ratio
we get

˜̀(θ(t+1))− ˜̀(θ(t)) ≈ (θ(t+1) − θ(t)) ˜̀
θ(θ̄) +

[(θ(t+1) − θ̄)2 − (θ(t) − θ̄)2]˜̀θθ(θ̄)/2!.

• Possible choices for θ̄ are aθ(t+1) + (1− a)θ(t), a ∈ [0, 1].
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Method (b) pictorially
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Some comments on (a) and (b)

Method (a) is a global approximation in the sense that it
approximates the whole posterior density, by (a certain function of)
the quadratic Rao-score function.

Method (b) targets the log-posterior ratio in the M-H ratio, and
offers a local approximation through Taylor expansions...
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Approximation of the log-posterior ratio: (a) vs (b)

For the posterior distribution in
the figure:

• we take a regular grid
{θ1, θ2, . . . , θ100} in [0.1, 7]
and

• evaluate the log-posterior
ratio ˜̀(θi)− ˜̀(θi + k · se) ,

where se = 1
/√

I(θ̃).

k > 0 controls the degree of
“locality” of the Taylor
approximations; the lower k more
local is the approximation.
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Approximation of the log-posterior ratio: (a) vs (b)
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Example 1:
The model is Poisson(λ),

the prior is Gamma(4/a, a), a = 2.5,
the sample of size n = 5 is generated with λ = a = 2.5.
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Poisson(λ): method (b)
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Poisson(λ): method (b)
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Poisson(λ): (a) vs (b)
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Example 2
The endometrial data set:

was first analysed by Heinze and Schemper (2002), and was
originally provided by Dr E. Asseryanis from the Medical University

of Vienna.
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The MLE is problematic!
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Posteriors with the BR-prior (i.e. Jeffreys’)
Acc.rates: Classical 40%, Rao 33%, Taylor 61%

Histogram of MCMC
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Autocorrelations of the chains
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Comments on Example 2

• Approximation based on Taylor expansion seem to work better
than the quadratic Rao-score function.

• Differences between the two methods seem particularly
relevant in cases with “problematic” parameters such as β1,
the coefficient of NV.

• The presence of such problematic parameters however seems
to lead to highly correlated chains (both for classical MCMC
and Taylor)...

• To go deeper into the last two points, let’s exaggerate things
a bit by considering the following extreme scenario.
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Example 3 (a posterior with non-standard shape):
Logistic regression with complete separation
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The MLE is infinite!
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Standard Metropolis-Hasting leads to very
autocorrelated chains!

Classical MH (beta0)
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Adaptive MH vs (a) vs (b)

Histogram of adaptive MCMC
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Adaptive MH vs (a) vs (b): comments

• The Rao-score function – method (a) – seems to give a
bimodal posterior.

• The approximation based on Taylor expansion – method (b) –
gets closer to the target.

• However, the posterior sample drawn with method (b), using
standard M-H, is highly autocorrelated...
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Wrap up with final remarks

• Prior elicitation is a difficult task when no a priori information
is available.

• Default priors such as the Jeffreys, the reference or matching
priors could be of practical use.

• However, in multidimensional cases, matching and reference
priors are typically hard to derive.

• In practical applications we may be looking for accurate
parameter estimates.

• Our proposal is then to use a Bias-Reduction prior which:
I can be used as a default and scaling-free prior for the whole

vector of parameters
I delivers MAP estimates that are second-order unbiased.
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Wrap up with final remarks

• In canonical exponential families, use of the BR-prior amounts
to using the Jeffreys prior...

• In other cases, the BR-prior is available only via the first
derivative of its log-density which in general does not coincide
with the Jeffreys.

• Unfortunately, use of BR-priors leads to a kind computational
intractability that seem not solvable by classical MCMC, IS,
ABC, or Laplace.
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Wrap up with final remarks

• We explored two methods for approximating the posterior
with such implicit priors.

• The method based on Taylor expansions seems to work better.

• However, for its success proposal jumps must be small.

• Unfortunately, small proposal jumps means slower posterior
exploration...

• How to speed up posterior exploration using small jumps is an
open problem...
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Wrap up with final remarks

In practical applications we may be looking for unbiased parameter
estimates.

Our proposal is then to use a Bias-Reduction prior which:

• can be used as a default and scaling-free prior for the whole
vector of parameters

• delivers MAP estimates that are second-order unbiased.

The Taylor method works better with small proposal jumps. But
small proposal jumps means slower posterior exploration... How to
speed up posterior exploration using small jumps is an open
problem...

Suggestions?
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