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The role of prediction in science



The Delphi’s Oracle
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The role of prediction in science

• Falsificationist philosophy of Karl Popper [Popper, 1934]:
theories, in order to be scientific, must be falsifiable on the
ground of their predictions.
• Wrong predictions should push the scientists to reject their

theories or to re-formulate them, conversely exact predictions
should corroborate a scientific theory.
• Strong instrumentalism [Hitchcock and Sober, 2004]:

predictive accuracy is constitutive of scientific success, not
only symptomatic of it, and prediction works as a
confirmation theory tool for science.
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The role of prediction in (data) science

• 20th century: expansion of science’s boundaries. Not only
psysics and natural science, but social and computational
sciences as well.
• Probabilistic and statistical methods have made the ‘debut of

science in society’ possible.
• 1940’s: Manhattan Project in Los Alamos, MCMC techniques

(Enrico Fermi, John Von Neumann, Stanislaw Ulam).
• 1970’s: GLMs (McCoullagh, Weddenburn)
• 1980’s: Neural Nets, Decision Trees. R
• 1990’s: WinBUGS, automatic MCMC procedures.
• 2000’s: Random Forests, Machine Learning
• 2010’s: Stan, Deep Learning

•
Main question: are social sciences falsifiable in light of their
predictions? Is a theory/model good only if able to well pre-
dict future events?
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When falsification does not make sense: Greece, Leicester,
Trump, Brexit...
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Weapons of mass prediction



Statistics and Machine Learning
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Statistics and Machine Learning

• Two cultures [Breiman et al., 2001]: link between some
input/independent data x and some response/dependent
variables y .
• Nature: unknown

• Statistics : information

• Machine Learning: prediction
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Weapons of mass prediction

• Statistics and Machine Learning: most popular ‘prediction’s
weapons’ for social and natural sciences (weather forecasting,
Presidential elections, global warming, etc. ).
• Though, many times the right weapons are embraced by the

wrong people.
• The predictive power in statistics is an elegant, small gun,

with good properties but small bullets, whereas in machine
learning is a bazooka, with devastating effectiveness and big
bullets.

•

Usually, statisticians do not take into account predictions
as confirmation tools for their theories, conversely Machine
Learners care predictions too much. Maybe, we need some-
thing in between.
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Predictive model’s accuracy in statistics

• Predictions’ uncertainty: in our practice, prediction should
not be assimilated to ‘take a rabbit out of a hat’, but looking
at its inherent uncertainty.
• Posterior predictive distribution: future hypothetical values

ỹ come from a probability distribution, p(ỹ |y), such that we
could define an expected predictive density (EPD) measure for
a new dataset.
• Predictive information criteria: Watanabe-Akaike

Information Criteria (WAIC) [Watanabe, 2010] and
Leave-One-Out cross validation Information Criteria (LOOIC)
[Vehtari et al., 2017]: data granularity, by definition of the
log-pointwise predictive density p(ỹi |y) for each new
observable value ỹi .
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Predictive accuracy in Machine Learning

• Training set choice: select the first half, or a percentage of a
dataset to train the algorithm, and use the remaining portion
to test the algorithm.
• Lack of robustness: a small change in the dataset can cause

a large change in the final predictions, and some adjustments
are often required to increase the algorithm’s robustness.
• Overfitting: a decision tree that is grown very deep tends to

suffer from high variance and low bias, is likely to overfit the
training data: if we randomly split the training set into two
parts, and fit a tree to both halves, the results could be quite
different.
• To alleviate this lack of robustness: Random Forests,

Boosting, Bagging.
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Weak instrumentalism



Maybe not too weak...
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Weak and strong instrumentalism

• Statistics: predictions and predictive accuracy are only
sometimes constitutive of scientific success (weak
instrumentalism). Usually, the only rationale to evaluate the
goodness of a statistical model is to look at its residuals. We
need something more!
• Machine Learning: predictive accuracy on

out-of-sample/future data is the only rationale to evaluate the
goodness of ML procedures (strong instrumentalism). We do
not need just this!

•
Goal: produce good, transparent and well posed al-
gorithms/models, and make them falsifiable upon a
strong check [Gelman and Shalizi, 2013].
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Falsificationist Bayesianism: beyond inference and prediction

• Falsificationist Bayesianism: model checking through pp
checks. Prior: testable part of the Bayesian model, open to
falsification [Gelman and Hennig, 2017].
• ỹ : unobserved future values, with posterior predictive

distribution:
p(ỹ |y) =

∫
p(ỹ |θ)p(θ|y)dθ, (1)

where p(θ|y) is the posterior distribution for θ, whereas
p(ỹ |θ) is the likelihood function for future observable values.
Equation (1) may be resambled in the following way:

p(ỹ |y) = p(ỹ , y)
p(y) = 1

p(y)

∫
p(ỹ , y , θ)dθ. (2)

A joint model p(ỹ , y , θ) for the predictions, the data and the
parameters is transparently posed, and open to falsification
when the observable ỹ becomes known.
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Limits of Machine Learning predictions

• Tuning parameters: the number of predictors at each split of
a random forest is a tuning parameter fixed at √p in most
cases, but in practice the best values for these parameters will
depend on the problem.
• ‘Shaking the training set’: became popular to ensure lower

variance and higher accuracy, with the data scientist
apparently ready to do ‘whatever it takes’ to improve over the
previous methods.
• Generalization: how well the concepts learned by a machine

learning model apply to specific examples not seen by the
model when it was learning. Ideally, you want to select a
model at the sweet spot between underfitting and overfitting.
This is the goal, but is very difficult to do in practice!
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So, what is weak instrumentalism, actually?

• Transparency: predictions should corroborate or reject an
underlying theory, but if the method (the theory) is tuned and
selected on the ground of its predictive accuracy, the theory to
be falsified is bogus, and not posed in a transparent way.
• Pre-existence: supposedly valid scientific theories should

exist before the future data have been revealed, and produce
some immediate benefits to the scientific community.

•

Weak instrumentalism’s main task is to make statistics more
predictive (e.g., using a joint model for predictions, data and
parameters, as in falsificationist Bayes) and Machine Learning
more explicative.
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Summary table
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Some examples from my/our
research



Posterior probabilities for the World Cup 2018 final
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footBayes R package

(available at:
https://github.
com/LeoEgidi/
footBayes)
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Accuracy for World Cup predictions

A Train 75% of randomly selected group stage
matches
Test Remaining 25% group stage matches

B Train Group stage matches
Test Knockout stage

C Train Group stage matches for which both the
teams have a Fifa ranking greater than 1
Test Knockout stage.

[Egidi and Torelli, 2019]
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Prediction of the final rank league: Serie A 2016-2017
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Prediction of the volleyball rank: SuperLega 2017-2018
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Prediction for the FVG commuters
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Discussion

• Prediction and predictive accuracy are central in the progress
of science and became even more relevant in statistics and
data science.
• Though, social sciences are not falsifiable as physics and

natural sciences.
• As statisticians demanded to build good models to

accomodate complex data, we feel that predictive accuracy is
not always constitutive of scientific success: prediction is not
everything, however is vidal, and it is our responsibility to
choose between the gun or the bazooka.
• Weak instrumentalism philosophical view is designed to

alleviate the falsification issue raised by strong
instrumentalism and to provide a bunch of rules to make
Statistics and Machine Learning more transparent.
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Put Statistics and ML far from these guys!
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