

UiO Institute of Basic Medical Sciences University of Oslo

Statistician's quest for biomarkers: optimizing the two stage testing procedures

Vera Djordjilović

November 22, 2019 StaTalk, Trieste

(日) (四) (王) (王) (王)

500

University of Oslo

- Magne Thoresen
- Jesse Hemerik
- Christian Page
- Jon Michael Gran
- Marit Bragelien Veierød

University of Tromsø

- The rese H. Nøst
- Torkjel M. Sandanger

Introduction

Motivating problem

ScreenMin procedure

Motivating problem revisited

Concluding remarks

Introduction

Motivating problem

ScreenMin procedure

Motivating problem revisited

Concluding remarks

• In 2018, 1 out of 6 deaths due to cancer

${\circ}\,$ In 2018, 1 out of 6 deaths due to cancer

${\circ}\,$ In 2018, 1 out of 6 deaths due to cancer

Introduction

Motivating problem

ScreenMin procedure

Motivating problem revisited

Concluding remarks

- Lung cancer Most common worldwide; so far no successful screening strategy.
- Working hypothesis. Smoking changes DNA methylation patterns, which in turn increase the risk of lung cancer.

Smoking, DNA methylation and lung cancer

Two building blocks:

(1) The mediator model

$$\boldsymbol{M}_{p\times 1} = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha} X + \boldsymbol{\epsilon}_M,$$

where $\boldsymbol{\epsilon}_M \sim \mathsf{N}(0, \Sigma)$ for some positive definite matrix Σ .

(2) The outcome model

logit
$$[\mathsf{P}(Y=1)] = \beta_0 + \boldsymbol{M}^\top \boldsymbol{\beta} + \gamma X.$$

・ロト ・ 四 ト ・ 三 ト ・ 三 ト

To test whether M is a mediator candidate, we test H

$$H = H_1 \cup H_2.$$

イロト イロト イヨト イヨト

*Intersection union test (Gleser, 1973).

Introduction

Motivating problem

ScreenMin procedure

Motivating problem revisited

Concluding remarks

Multiple potential mediators

	Test of H_{i1}	Test of H_{i2}	<i>p</i> -value
H_1	p_{11}	p_{12}	$\max\{p_{11}, p_{12}\}$
÷	:	:	:
H_m	p_{m1}	p_{m2}	$\max\left\{p_{m1}, p_{m2}\right\}$

	Test of H_{i1}	Test of H_{i2}	<i>p</i> -value
H_1	p_{11}	p_{12}	$\max\{p_{11}, p_{12}\}$
÷	:	:	:
H_m	p_{m1}	p_{m2}	$\max\left\{p_{m1}, p_{m2}\right\}$

Consider $\{\max p_i, i = 1, ..., m\}$ and correct for multiplicity so that FWER (Bonferroni) or FDR (Benjamini and Hochberg) is controlled.

	Test of H_{i1}	Test of H_{i2}	<i>p</i> -value
H_1	p_{11}	p_{12}	$\max\{p_{11}, p_{12}\}$
÷	:	:	:
H_m	p_{m1}	p_{m2}	$\max\left\{p_{m1}, p_{m2}\right\}$

Consider $\{\max p_i, i = 1, ..., m\}$ and correct for multiplicity so that FWER (Bonferroni) or FDR (Benjamini and Hochberg) is controlled.

This procedure is very conservative!

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Use the information on the minimum!

	Test of H_{i1}	Test of H_{i2}	$\min p$	$\max p$
H_1	p_{11}	p_{12}	$\min\{p_{11}, p_{12}\}$	$\max\left\{p_{11}, p_{12}\right\}$
÷	:	:		:
H_m	p_{m1}	p_{m2}	$\min\left\{p_{m1}, p_{m2}\right\}$	$\max\left\{p_{m1}, p_{m2}\right\}$

Two step multiple testing procedure: ScreenMin

Step 1: Screening. $S = \{i : \min\{p_{i1}, p_{i2}\} < c\}.$

Step 2. Testing.

$$p_i^* = \begin{cases} |S| \max \{p_{i1}, p_{i2}\} & i \in S \\ 1 & i \notin S. \end{cases}$$

Two step multiple testing procedure: ScreenMin

Step 1: Screening. $S = \{i : \min\{p_{i1}, p_{i2}\} < c\}.$

Step 2. Testing.

$$p_i^* = \begin{cases} |S| \max \{p_{i1}, p_{i2}\} & i \in S \\ 1 & i \notin S. \end{cases}$$

Theorem (Djordjilović et al. (2019b))

Under the assumption of independence of p-values, ScreenMin provides an asymptotic control of FWER for $\mathcal{H} = \{H_1, \ldots, H_m\}.$

ъ

イロト 不得 トイヨト イヨト

Threshold for selection c: the trade-off

6

500

E

イロト イロト イヨト イヨト

Threshold for selection c: the trade-off

Threshold for selection c: the trade-off

590

ł

For us, the optimal threshold maximizes the (average) power to reject a false hypothesis.

In general difficult, so we assume:

 ${\circ}\,$ Non null $p\mbox{-values}$ have the same d.f. F

Then, the probability of rejection of H_i conditional on |S|:

$$\Pr\left(\overline{p}_i \leq \frac{\alpha}{|S|}, \underline{p}_i \leq c\right) = \begin{cases} 2F(c)F\left(\frac{\alpha}{|S|}\right) - F^2(c) & \text{for } c \, |S| \leq \alpha; \\ F^2\left(\frac{\alpha}{|S|}\right) & \text{for } c \, |S| > \alpha \end{cases}$$

в

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

But not all thresholds guarantee finite sample FWER. Constrained optimization problem:

$$\begin{split} \max_{0 < c \leq \alpha} \mathrm{E} \left[\Pr \left(\overline{p}_i \leq \frac{\alpha}{|S(c)|}, \, \underline{p}_i \leq c \right) I[|S(c)| > 0] \right] \\ \text{subject to } \Pr(V(c) \geq 1) \leq \alpha. \end{split}$$

But not all thresholds guarantee finite sample FWER. Constrained optimization problem:

$$\max_{0 < c \leq \alpha} \mathbf{E} \left[\Pr \left(\overline{p}_i \leq \frac{\alpha}{|S(c)|}, \, \underline{p}_i \leq c \right) I[|S(c)| > 0] \right]$$

subject to $\Pr(V(c) \ge 1) \le \alpha$.

But not all thresholds guarantee finite sample FWER. Constrained optimization problem:

$$\begin{split} \max_{0 < c \leq \alpha} \mathbf{E} \left[\Pr\left(\overline{p}_i \leq \frac{\alpha}{|S(c)|}, \, \underline{p}_i \leq c \right) I[|S(c)| > 0] \right] \\ \text{subject to } \Pr(V(c) \geq 1) \leq \alpha. \end{split}$$

No closed form solution...

However, well approximated (Djordjilović et al., 2019a) by the solution to

 $c \operatorname{E}|S(c)| = \alpha.$

Depends on:

- The number of considered hypotheses m;
- Proportions of different types of hypotheses π_j , j = 0, 1, 2;
- Distribution of non-null *p*-values.

Search for the largest $c \in (0, 1)$ such that

 $c \left| S(c) \right| \le \alpha.$

- Easy to compute (no numerical optimization)
- Very good approximation
- Connection with Wang et al. (2016)

Introduction

Motivating problem

ScreenMin procedure

Motivating problem revisited

Concluding remarks

Smoking, DNA methylation and lung cancer

- 125 matched case-control pairs within NOWAC.
- Around 3000 CpGs, previously reported to be associated to smoking, were grouped into 72 groups, according to a gene they map to.
- Smoking coded as "Never", "Former", "Current" .
- Analysis adjusted for age, time since blood sampling, and cell composition.
- We applied the ScreenMin procedure to the 72 genes groups of CpGs. Seven groups passed the screening.

Gene	p_1	p_2
F2RL3	5.48×10^{-5}	0.54
AHRR	$1.76 imes 10^{-4}$	0.57
GFI1	5.72×10^{-6}	0.42
MYO1G	6.61×10^{-6}	0.48
ITGAL	1.72×10^{-6}	0.34
VARS	1.61×10^{-5}	0.89
CLDND1	$2.37 imes 10^{-4}$	0.99

Association between smoking and methylation strong, but no evidence of association between methylation and lung cancer in the outcome model. Introduction

Motivating problem

ScreenMin procedure

Motivating problem revisited

Concluding remarks

- Screening/selection. In high dimensions (almost) necessary; but needs to be accounted for
- ScreenMin. Two stage procedure that maintains (asymptotic) FWER when testing multiple union hypotheses for arbitrary selection thresholds
- **Optimizing the threshold.** Maximizes power while guaranteeing FWER in finite samples
- Smoking, DNA methylation and lung cancer in Norwegian women. No evidence of mediation by DNA methylation (in blood), so no new biomarker candidates

- Djordjilović, V., Hemerik, J., and Thoresen, M. (2019a). Optimal two-stage testing of multiple mediators. *arXiv* preprint arXiv:1911.00862.
- Djordjilović, V., Page, C. M., Gran, J. M., Nøst, T. H., Sandanger, T. M., Veierød, M. B., and Thoresen, M. (2019b). Global test for high-dimensional mediation: Testing groups of potential mediators. *Statistics in Medicine*, 38(18):3346–3360.
- Gleser, L. (1973). On a theory of intersection union tests. Institute of Mathematical Statistics Bulletin, 2(233):9.
- Wang, J., Su, W., Sabatti, C., and Owen, A. B. (2016). Detecting replicating signals using adaptive filtering procedures with the application in high-throughput experiments. arXiv preprint arXiv:1610.03330.

nac

(日)