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INndex

— Complex Data: what is it and which mathematical tools we need

— Graph Space: a good candidate to analyse set of Networks

—— Statistic on Graph Space

— Example 1: Simulated Dataset

— Example 2: Airlines Dataset
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“Equipped with which tools?




Which ingredients to make statistics?

Metric Space — Cluster Analysis
Geodesics Space — Regression, Principal Components Analysis

Measure Space — Probability Distribution, Testing



Which ingredients to make statistics?

Euclidean Vectors (finite and infinite dimension)

Vv Metric Space — Cluster Analysis
™ Geodesics Space — Regression, Principal Components Analysis

Vv Measure Space — Probability, Distribution, Testing



Which ingredients to make statistics?

Mildly non Euclidean
(functions, covariance matrices, ...)

N Metric Space — Cluster Analysis
WV Geodesics Space — Regression, Principal Components Analysis

N Measure Space — Probability, Distribution, Testing



Which ingredients to make statistics?

Strongly non Euclidean
(networks, trees, ...)

N Metric Space — Cluster Analysis
? Geodesics Space — Regression, Principal Components Analysis

? Measure Space — Probability, Distribution, Testing
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Network Analysis

Datum: x = (P,R,a)

P- set of nodes

R € P" - set of relations (edges if r=2).

a:R — M -function assigning attributes to
edges and nodes

Rome Public Transport System Network



Network Analysis: from one to many

Data Points are Networks

X, = (P,Ry), ... X, = (P,R,)

Public Transportation Network in different cities



Network Analysis: from one to many

Public Transportation Network in different cities

Many new questions arise:

e How can we describe these
networks?

« How can we relate nodes in
networks?

« Along which relations/features are
different?

- How can we make statistics?
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Graph Space
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Graph Space
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Graph Space

NnO

41

al

no 300 ~ no 300

121
121

N3 27 n2 N3 27

N1

N2

X2 = X3

Allowing permutation of nodes




Space: X

T : Permutation Action
Permuting nodes

v
Graph Space: X/T

Quotient Space




Graph Space

Metric Space (X, d,)
With dy invariant with respect
to permutation

Metric Space (X/T.d)

inf
d(|xq], [x2]) = ;:T dy (tX1,X2)




Graph Space

Manifold

T action is not Free

Not a Manifold

Exclude all the literature about
Statistics on Manifold




Graph Space: Novelty

Curvature of the space: unbounded
— No uniqueness of the geodesics even locally.
— No unigueness of the Fréchet Mean

Isometric and Finite Dimension Action:
— Allows to transfer easily computation from X to X/T

Define Geodesic Principal Components and
Introduce the Align All and Compute Algorithm




Statistic on Graph Space




Align All and Compute Algorithm

Graph Space: X/T



Align All and Compute Algorithm

Graph Space: X/T



Align All and Compute Algorithm

Graph Space: X/T



Align All and Compute Algorithm

-

Graph Space: X/T Space: X




Align All and Compute Algorithm

Graph Space: X/T Space: X




Align All and Compute Algorithm
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Graph Space: X/T Space: X




Align All and Compute Algorithm

Graph Space: X/T Space: X




Align All and Compute Algorithm

Can be a Fréchet Mean, a Geodesic,

ol etc.

Graph Space: X/T



Example 1: Simulation




Topological Variation




Topological Variation

Generated 5000 observation randomly sampled from the 5 orbits. Here a subsample:
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A Frechet mean

Estimation of Fréchet Mean Estimation of Fréchet Mean

Theoretical Fréchet Mean without Alignment with Alignment



First Geodesic Principal Component

Projection along the 15t GPCA explaining
60% of the total variance



Example 2: Letters




L etters




L etters




Letters GPCAnNalysis




Example 2: Clustering




Alirlines Dataset

Luftansa KLM

12 airlines companies OpenFlights Project



Alirlines Dataset

Luftansa KLM



Cluster

Graduate Assignment Graph Matching, Euclidean Distance, Ward Linkage



Conclusions




Conclusions

Starting from Strcuture Spaces defined by Jain and Obermayer (2009), we
studied and introduced:

——— Geometrical Properities of the Space (e.g. Curvature)
———= Geodesic Principal Component
——= Align All and Compute Algorithm
Next Step:
——— Introduce a Measure on the Space

——— Define a Regression Model Network-on-Network
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Examples




Example: Attributes and Topology




L etters DataSet

> Presence of a drawn line




L etters DataSet




L etters DataSet




A mean

[1.52, 2.50]

[0.90, 1.47] [2.11,1.4]

[0.71, 0.74] [2.28, 0.69]



Geodesic Principal Component Analysis

Eigen vectorlletters O

Capturing 18% of the total variance



Geodesic Principal Component Analysis

Capturing 16% of the total variance



Geodesic Principal Component Analysis

Eigen vector3letters O

Capturing 14% of the total variance



Observation about different cases

EDGES: All

EDGES: Not All

NODES:
All same number

7

With intensity edge
%ttributes or no attribute

NODES:
Different number

&3

With intensity edge

v and nodes attributes
or no attribute




