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Overview

1 Functional Magnetic Resonance Imaging (fMRI) data

Nature

Modeling and Assumptions

2 Performance of an alternative approach
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Neuroimaging to study the brain

Non-invasive real-time study of the brain - Structural and
Functional

Several existing techniques: PET, fMRI, CT, EEG, MEG

Methods to analyze the outputs of these techniques
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Modeling fMRI data

Dimensionality
200,000 voxels for a 3T scanner
100-2000 images/subject
10-40 subjects/population inference study
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Modeling fMRI data
Predicted response

Haemodynamic Reponse Function (HRF)
Blood oxygen level dependent (BOLD) signal

The predicted response

Figure: Obtaining the predicted response at a voxel. Source: FSL
Course (http://fsl.fmrib.ox.ac.uk/fslcourse/)
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Modeling fMRI data
GLM Model

Figure: The GLM framework at each voxel. Source: FSL Course
(http://fsl.fmrib.ox.ac.uk/fslcourse/)
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Modeling fMRI data
Contrast maps

Figure: Generation of contrast maps. Source: FSL Course
(http://fsl.fmrib.ox.ac.uk/fslcourse/)
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Modeling fMRI data

Figure: Typical steps for image processing (Source: Karl Friston,
SPM workshop (May 2011))
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Inference on fMRI data
Thresholding

What features to infer on?

Voxel

Clusters

Figure: Choosing an appropriate threshold for inference. (Source:
Presentation, RFT for Dummies - Part 1 (2009), Lea Firmin and
Anna Jafarpour)
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Inference on fMRI data: Multiple testing problem
Definition and corrections

Hypothesis testing in neuroimaging: Multiple testing problem

Measures of error:

Familywise Error Rate (FWE)

Bonferroni correction

αcorr = αFWE/(nTests)

Random Field theory

pvox(t) ≈ R (4 ln(2))3/2

((2π)2)
e(−t2/2)(t2 − 1)

No. of Resels R = V/(FWHMxFWHMyFWHMz)

Permutation testing
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Inference of fMRI data
RFT assumptions

RFT assumptions:

Spatial smoothness of fMRI signal is constant across the
brain

the autocorrelation function is a squared exponential

Eklund et al: Real resting-state data and random task group
analyses to compute empirical family-wise error rates for the
fMRI software packages SPM,FSL, and AFNI

High false-positive rates in established methods for
cluster-wise inference

spatial autocorrelation in the data violates the assumption
squared exponential assumption of RFT
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An alternative approach

A trend surface model proposed by Heurtas et. al. (2017)
employing the instantaneous connectivity parcellation (ICP)
(van Oort et al 2016).
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The Trend Surface Model (TSM)
ICP

Instantaneous Correlation Parcellation
(van Oort et al. 2016)

Top-down parcellation
Known large-scale ROI → functionally homogenous
sub-regions based on temporal signature

Figure: Simulated time courses using simple sinusoid, transients and
Gaussian noise, as presented in Van Oort et al. “Human brain
parcellation using time courses of instantaneous correlations”
NeuroImage (2017)13 / 28
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Bayesian Linear Regression

Basis functions: subnetworks obtained from ICP

Find a linearly weighted sum of these basis functions

ys =

M∑
m=1

wmφm(x) + εs (1)

where
- M is the total no. of basis functions, εs ∼ N(0, β−1), β is
the noise precision
- ws = [w1,s, . . . , wM,s]

T is an M dimensional weight vector of
regression coefficients
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p(Y,Φ,W,Λα, β | θβ, θα) = p(β | θβ)p(Λα | θα)
S∏
s=1

p(ys | X, β,ws)p(ws | Λα)
(2)

- Φ is a V ×M matrix of basis functions and Y is a V × S
matrix of the neuroimaging data for all subjects.
- W = [w1, . . . ,wN ] is an M × S weight matrix, with prior
p(ws | α) = N (ws | 0,Λ−1

α ). Λα is the precision matrix with
α = [α1, . . . , αm]

T as hyperparameters.
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- The precision matrix is assigned a Wishart prior
p(Λα | θα) = Wish(Λα | N,P), N is degrees of freedom and P
is the precision of the prior.

- The noise precision has a Gamma prior
p(β | θβ) = Gamma(β | a, b) where a, b are the shape
coefficients.

- Spatial correlations between basis functions by allowing
off-diagonal entries in Λα
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Data Analysis
The Data

1. Resting state fMRI data (used as null data) from the 1000
Functional Connectomes project - Cambridge dataset

198 healthy controls (75 M,123 F), 18–30 y.o.

3T scanner, 119 time points, 72× 72× 47 voxels

2. Task fMRI data from the Human Connectome Project (500
Subjects release)

100+ unrelated healthy subjects

3T scanner

Four tasks: Working memory, Gambling, Emotion and
Language tasks
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Results: Specificity
Specificity of the TSM

How well does TSM detect false positives?

Randomized box-design: ∼ 6 % false positive rate
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Results: Specificity

Figure: False positive rate from the TSM using pruned principle
components, in comparison with results obtained by Eklund et al.
(2016) for the softwares FSL, SPM and AFNI for cluster defining
threshold (CDT) values of p=0.001 and p=0.0119 / 28
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Results: Sensitivity
Sensitivity of the TSM

How well does TSM detect task activation?

1000 groups of N=20 subjects selected randomly (without
replacement) from 100+ subjects in each of the four tasks
from the Human Connectome Project task fMRI data

One sample t-test; random group shows significant result
if atleast one parcel is significant (FWE)

An ICP parcel that is significant in atleast 50% of random
group analysis is considered to be activated
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Results: Sensitivity
Sensitivity of TSM: Working Memory task

Figure: Brain activation under the Working Memory task from Barch
et al. (2014) (top) and that obtained using TSM (bottom)
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Results: Sensitivity
Sensitivity of TSM: Gambling task

Figure: Brain activation under the Gambling task from Barch et al.
(2014) (top) and that obtained using TSM (bottom)
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Results: Sensitivity
Sensitivity of TSM: Emotion task

Figure: Brain activation under the Emotion task from Barch et al.
(2014) (top) and that obtained using TSM (bottom)23 / 28
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Conclusion

The TSM fills an existing need for statistical methods that
tackle spatial structure of neuroimaging data, and provides the
following advantages:

Abstracts away the voxels

Cleaner biological interpretation

Much fewer basis functions than voxels
=⇒ highly reduced no. of parameters and hence

correction for multiple comparisons

No commitment to a specific scale of parcellation =⇒
applicable to areas requiring high resolution imaging
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Conclusion

TSM provides good specificity and sensitivity, thereby
providing a good alternative to currently popular methods

of fMRI data analysis and inference.
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Thank you!
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