

Overview

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Spatial Statistical Inference in Functional Magnetic Resonance Imaging (fMRI) data Examining the performace of a trend surface model

Divya Brundavanam

StaTalk2019 @ UniTS

22 November 2019

bdivya@umich.edu

Overview

Overview

- Introduction
- Modeling fMRI data Predicted response GLM Model
- Overview
- Inference on fMRI data
- The TSM ICP Bayesian Model
- Data Analysis & Results
- Conclusion

1 Functional Magnetic Resonance Imaging (fMRI) data

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

- Nature
- Modeling and Assumptions

2 Performance of an alternative approach

Neuroimaging to study the brain

Overview

Introduction

- Modeling fMRI data Predicted response GLM Model Overview
- Inference on fMRI data
- The TSM ICP Bayesian Model
- Data Analysis & Results
- Conclusion

- Non-invasive real-time study of the brain Structural and Functional
- Several existing techniques: PET, fMRI, CT, EEG, MEG

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

• Methods to analyze the outputs of these techniques

Modeling fMRI data

Overview

Introduction

Modeling fMRI data

Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Dimensionality

200,000 voxels for a 3T scanner 100-2000 images/subject 10-40 subjects/population inference study

Modeling fMRI data Predicted response

Overview

Introduction

Modeling fMRI data

Predicted response

GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Haemodynamic Reponse Function (HRF) Blood oxygen level dependent (BOLD) signal

The predicted response

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

Figure: Obtaining the predicted response at a voxel. Source: FSL Course (http://fsl.fmrib.ox.ac.uk/fslcourse/)

Modeling fMRI data

Figure: The GLM framework at each voxel. Source: FSL Course (http://fsl.fmrib.ox.ac.uk/fslcourse/)

Modeling fMRI data Contrast maps

 Figure: Generation of contrast maps. Source: FSL Course

 (http://fsl.fmrib.ox.ac.uk/fslcourse/)

Modeling fMRI data

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Figure: Typical steps for image processing (Source: Karl Friston, SPM workshop (May 2011))

Inference on fMRI data Thresholding

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

What features to infer on?

- Voxel
- Clusters

Figure: Choosing an appropriate threshold for inference. (Source: Presentation, RFT for Dummies - Part 1 (2009), Lea Firmin and Anna Jafarpour)

Inference on fMRI data: Multiple testing problem Definition and corrections

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Hypothesis testing in neuroimaging: Multiple testing problem

Measures of error:

- Familywise Error Rate (FWE)
 - Bonferroni correction

$$\alpha_{corr} = \alpha_{FWE} / (n_{\text{Tests}})$$

• Random Field theory

$$p^{vox}(t) \approx R \frac{(4\ln(2))^{3/2}}{((2\pi)^2)} e^{(-t^2/2)} (t^2 - 1)$$

No. of Resels $R = V/(FWHM_xFWHM_yFWHM_z)$

• Permutation testing

Inference of fMRI data RFT assumptions

RFT assumptions:

Overview

- Introduction
- Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

- The TSM ICP Bayesian Model
- Data Analysis & Results
- Conclusion

- Spatial smoothness of fMRI signal is constant across the brain
- the autocorrelation function is a squared exponential

Eklund et al: Real resting-state data and random task group analyses to compute empirical family-wise error rates for the fMRI software packages SPM,FSL, and AFNI

- High false-positive rates in established methods for cluster-wise inference
- spatial autocorrelation in the data violates the assumption squared exponential assumption of RFT

An alternative approach

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

A trend surface model proposed by Heurtas et. al. (2017) employing the instantaneous connectivity parcellation (ICP) (van Oort et al 2016).

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

The Trend Surface Model (TSM)

Overview

Introduction

Modeling fMRI data Predicted response GLM Model

Overview

Inference on fMRI data

The TSM

ICP Bavesian Model

Data Analysis

& Results

Conclusion

Instantaneous Correlation Parcellation (van Oort et al. 2016)

- Top-down parcellation
- Known large-scale ROI → functionally homogenous sub-regions based on temporal signature

Figure: Simulated time courses using simple sinusoid, transients and Gaussian noise, as presented in Van Oort et al. "Human brain parcellation using time courses of instantaneous correlations" NeuroImage (2017)

Bayesian Linear Regression

- Overview
- Introduction
- Modeling fMRI data Predicted response
- GLM Model
- Overview
- Inference on fMRI data
- The TSM ICP Bayesian Model
- Data Analysis & Results
- Conclusion

- Basis functions: subnetworks obtained from ICP
- Find a linearly weighted sum of these basis functions

$$\mathbf{y}_s = \sum_{m=1}^M \mathbf{w}_m \phi_m(\mathbf{x}) + \epsilon_s \tag{1}$$

where

- M is the total no. of basis functions, $\epsilon_s \sim N(0,\beta^{-1}), \,\beta$ is the noise precision
- $\mathbf{w}_s = [w_{1,s}, \dots, w_{M,s}]^T$ is an M dimensional weight vector of regression coefficients

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

$$p(\mathbf{Y}, \mathbf{\Phi}, \mathbf{W}, \mathbf{\Lambda}_{\alpha}, \beta \mid \theta_{\beta}, \theta_{\alpha}) = p(\beta \mid \theta_{\beta})p(\mathbf{\Lambda}_{\alpha} \mid \theta_{\alpha})$$
$$\prod_{s=1}^{S} p(\mathbf{y}_{s} \mid \mathbf{X}, \beta, \mathbf{w}_{s})p(\mathbf{w}_{s} \mid \mathbf{\Lambda}_{\alpha})$$
(2)

- ${\bf \Phi}$ is a $V\times M$ matrix of basis functions and ${\bf Y}$ is a $V\times S$ matrix of the neuroimaging data for all subjects.

- $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_N]$ is an $M \times S$ weight matrix, with prior $p(\mathbf{w}_s \mid \alpha) = \mathcal{N}(\mathbf{w}_s \mid \mathbf{0}, \mathbf{\Lambda}_{\alpha}^{-1})$. $\mathbf{\Lambda}_{\alpha}$ is the precision matrix with $\alpha = [\alpha_1, \dots, \alpha_m]^T$ as hyperparameters.

Overview

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

- The precision matrix is assigned a Wishart prior $p(\mathbf{\Lambda}_{\alpha} \mid \theta_{\alpha}) = \operatorname{Wish}(\mathbf{\Lambda}_{\alpha} \mid N, \mathbf{P}), N$ is degrees of freedom and \mathbf{P} is the precision of the prior.

- The noise precision has a Gamma prior $p(\beta \mid \theta_{\beta}) = \text{Gamma}(\beta \mid a, b)$ where a, b are the shape coefficients.

- Spatial correlations between basis functions by allowing off-diagonal entries in Λ_{α}

Data Analysis The Data

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

1. Resting state fMRI data (used as null data) from the 1000 Functional Connectomes project - Cambridge dataset

- 198 healthy controls (75 M,123 F), 18-30 y.o.
- 3T scanner, 119 time points, $72 \times 72 \times 47$ voxels

2. Task fMRI data from the Human Connectome Project (500 Subjects release)

- 100+ unrelated healthy subjects
- 3T scanner
- Four tasks: Working memory, Gambling, Emotion and Language tasks

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

Results: Specificity Specificity of the TSM

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

How well does TSM detect false positives?

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

 \bullet Randomized box-design: \sim 6 % false positive rate

Results: Specificity

Results: Sensitivity Sensitivity of the TSM

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

How well does TSM detect task activation?

- 1000 groups of N=20 subjects selected randomly (without replacement) from 100+ subjects in each of the four tasks from the Human Connectome Project task fMRI data
- One sample t-test; random group shows significant result if atleast one parcel is significant (FWE)
- An ICP parcel that is significant in atleast 50% of random group analysis is considered to be activated

Results: Sensitivity Sensitivity of TSM: Working Memory task

Overview Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Figure: Brain activation under the Working Memory task from Barch et al. (2014) (top) and that obtained using TSM (bottom)

Results: Sensitivity Sensitivity of TSM: Gambling task

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Figure: Brain activation under the Gambling task from Barch et al. (2014) (top) and that obtained using TSM (bottom)

Results: Sensitivity Sensitivity of TSM: Emotion task

Overview

Introduction

Modeling fMRI data Predicted response GLM Model

Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

Conclusion

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

The TSM fills an existing need for statistical methods that tackle spatial structure of neuroimaging data, and provides the following advantages:

- Abstracts away the voxels
- Cleaner biological interpretation
- Much fewer basis functions than voxels
 ⇒ highly reduced no. of parameters and hence
 - correction for multiple comparisons
- No commitment to a specific scale of parcellation \implies applicable to areas requiring high resolution imaging

Conclusion

Overview Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

TSM provides good specificity and sensitivity, thereby providing a good alternative to currently popular methods of fMRI data analysis and inference.

Key References

Overview

Introduction

Modeling fMRI data Predicted response GLM Model Overview

Inference on fMRI data

The TSM ICP Bayesian Model

Data Analysis & Results

Conclusion

- 1. Barch et al. "Function in the human connectome: task-fMRI and individual differences in behavior Neuroimage 80, 169189 (2013)
- Beckmann et al. "General multilevel linear modeling for group analysis in fmri". NeuroImage, 20(2):1052–1063 (2003)
- Eklund et al. "Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates." Proceedings of the National Academy of Sciences (2016): 201602413.
- Huertas et al. "Spatial model using multiscale functional parcels" NeuroImage (2017), 10.1016/j.neuroimage.2017.08.009.
- Van Oort et al. "Human brain parcellation using time courses of instantaneous correlations" NeuroImage (2017), http://dx.doi.org/10.1016/j.neuroimage 2017.07.027 = coact

Acknowledgements

Overview

- Modeling fMRI data Predicted response GLM Model Overview
- Inference on fMRI data
- The TSM ICP Bayesian Model
- Data Analysis & Results
- Conclusion

• Donders Center for Cognitive Neuroimaging (DCCN), Radboud University, The Netherlands

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

- Dr. Andre F. Marquand (DCCN)
- Prof. Christian F. Beckmann (DCCN)
- Prof. Nicola Torelli (University of Trieste)

UDINE DI UDINE		
Overview Introduction Modeling fMRI data Predicted response GLM Model Overview		
Inference on fMRI data The TSM ICP Bayesian Model Data Analysis & Results	Thank you!	
Conclusion		
28 / 28		うくぐ